Secure and Tamper-resilient Distributed Ledger
for Data Aggregation in Autonomous Vehicles

Sananda Mitra
Dept. of Computer Science and Engineering
Techno International New Town, Kolkata, India
sananda.mitra8 @ gmail.com

Abstract—The phases those turn the wheels of an autonomous
vehicle, are perception, decision and actuation. Among these,
the major highlight of recent research has been perception
through diverse sensors, and decision through an ever-aggressive
cloud/fog/mist computing setup. In this paper, we take a closer
look into the flow of data, both internal and external to the
autonomous vehicle. We argue that confidentiality, integrity and
availability of these data are critical to the eventual adoption
of higher-level security and privacy mechanisms in autonomous
vehicles. To that effect, we propose a secure and tamper-resilient
distributed ledger as an underlying enabler for intra-vehicular
data aggregation, and study its security and privacy issues under
appropriate adversarial models, where the distributed ledger is
instantiated as a standard consortium blockchain.

Index Terms—autonomous vehicles, data aggregation, dis-
tributed ledger, blockchain, tamper-resilience, authenticity

I. INTRODUCTION

Autonomous Vehicles (AVs) have the potential to disrupt the
landscape of transportation systems through optimized routing,
last-mile connectivity, reduced congestion, shared mobility,
accident prevention and resource optimization. The industry
recognizes six levels of autonomy [1] — Level O (no autonomy)
to Level 5 (full autonomy), as per SAE taxonomy [2]. We
have already reached the prototyping stage for Level 4 (high)
autonomy, where all critical operations are autonomous, with
provisions for human intervention only in cases of exigency.
It is expected that Level 5 (full) autonomy, without the need
for any human intervention, will be a reality by 2021 [3].

Autonomy of an AV relies on a synergistic data ecosystem.
With the recent proliferation of cloud, fog and mist comput-
ing [4], it is most appropriate to consider an AV as a complex
cyber-physical system (CPS) embedded within an intelligent
grid of static (infrastructured) and dynamic (infrastructureless)
information agents, where the autonomy of the AV unit may
be considered as a three-phase reinforcement learning:

o Perception — Interaction with information agents, within

the system and in the environment, for data accumulation;

o Decision — Inference from accumulated data, through

artificial intelligence, for (real-time) cognitive resolution;

o Actuation — Implementation of cognitive decisions, with

adequate feedback mechanism, for automated operation.

In each of these three phases, data and the information derived

from it plays a major role in determining the runtime safety,
stability and security of the entire AV ecosystem.
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Vulnerabilities arising from the context of smart mobility on
a fleet of AVs is quite unlike that of conventional CPS. Attacks
on an AV, in isolation or within a fleet, may range across data
leakage, forged data, identity spoofing, data theft, denial-of-
service, and many more as we approach Level 5 autonomy [5],
[6], [7]. In fact, the security and privacy issues may affect not
just AVs, but also threaten smart mobility grids consisting of
roadside sensors, security cameras, traffic signals, toll units,
parking facilities, electric charging stations, entertainment sys-
tems, smart home networks, diagnostic networks, insurance
agencies, service centers and system vendors [8], [9], [10].

In recent works [8], [11], [12], researchers have extensively
studied the likelihood and severity of potential threats on AVs
by considering the attackers’ skill and motivation, vulnera-
ble components in the vehicle, attack surfaces, and eventual
repercussions. In contrast, we emphasize the role of data and
information in determining the safety and stability of an AV,
and propose a secure data accumulation, transportation and
aggregation framework in the context of an AV.

II. DATA-FLOW IN AUTONOMOUS VEHICLES

In a Level 4 or Level 5 AV, the data flow ranges across
a multitude of information units, including intra-vehicular
control units (e—), perception sensors (e—), and peripheral
communication modules (e—), as illustrated in Fig. 1. We
model the complexity of the data network in three functional
abstractions — data generation (telematics and diagnostics),
data acquisition (perception and communication), and data
processing (decision and actuation), as explained further.
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Fig. 1. Information Units in typical AVs: e— Intra-vehicular Control Units,
e— Perception Sensors, and e— Peripheral Communication Modules.



A. Data Generation: Telematics and Diagnostics

AVs use various intra-vehicular sensors to improve driv-
ing accuracy, and the collective data generated from these
sensors are provided to the Electronic Control Units (ECUs)
that enable complex driving assistance and in-vehicle com-
fort [13], [14], [15]. Fig. 1 illustrates the major on-board
control units (e—). The Powertrain Unit controls the engine
and transmission, while the Chassis Unit encompasses steering
control, anti-lock braking, airbags and adaptive cruise control.
The Body Unit controls electronic systems related to central
locking, lights, air conditioning, while the Infotainment Unit
takes care of in-vehicle entertainment provisions (radio, media,
broadcast) and major information systems like GPS naviga-
tion, radio, and telecommunication services [14], [15].

Communication between AV control units is of paramount
importance to ensure performance and safety. The standard
communication protocols for safety critical (powertrain, chas-
sis) and non-critical operations are CAN, CAN FD, FlexRay,
LIN, MOST, and Ethernet [5], [16]. In addition, OBD-II
signalling protocols and WiFi or Cellular support exist for
cloud, fog and mist access [7], [15]. Smart AV operation
requires a number of components inside the vehicle to generate
a substantial amount of data, including diagnostics, driving
behavior, failure reports, and in-vehicle services [17].

B. Data Acquisition: Perception and Communication

Perception and communication ecosystem of an AV is the
primarily driver of vehicle dynamics. Fig. 1 illustrates major
perception sensor units (e—) and peripheral communication
modules (e—) present in an AV. Communication supported
by V2X infrastructure [18] is used to acquire peripheral data
imperative for navigation-fidelity. Self-driving cars use a range
of perception sensors like LiDAR, RADAR, front and rear
cameras, inertial sensors, to name a few [19]. Most sensors
lack processing power, and hence the data acquired through
these sensors are fused at a heterogeneous data processing
framework that can make complex self-driving decisions like
adaptive cruise control and automated emergency braking [5],
[15]. The fusion of data is also helpful in providing redundancy
to cover for the limitations of individual technologies.

Conventional data fusion requires interconnection between
internal communication protocols to external communication
ecosystem via a common gateway [5], [7]. This poses a
potentially serious cyber-security flaw in prevalent AV designs,
where the common gateway acts as a single point of failure.
Gateway compromise may lead to vulnerabilities in data acqui-
sition and communication within an AV network, resulting in
critical failure in safety, security and privacy of the system [5].

C. Data Processing: Decision and Actuation

The Al-driven computing core of an AV is responsible for
processing the data generated within the system (Sec. II-A)
and the data accumulated from the environment (Sec. II-B) to
model the smart mobility grid in and around the vehicle, and
take informed decisions regarding control, navigation, safety,
maintenance and infotainment within the system [20].

Autonomous Navigation, the primary requirement of an AV,
presents quite a challenging scenario for data aggregation
and processing with increasing levels of autonomy. While
advances in Al address data processing needs, data acquisition
and fusion requires a robust cyber-security framework to
ensure safety and security [6], [8]. Data flow for autonomous
navigation encompasses data acquisition from intra-vehicular
control units (powertrain, chassis, body, infotainment) and
peripheral communication modules (telematics, V2X) for per-
ception, followed by data fusion and processing at the central
Al module for real-time decisions, and finally transmission
of control signals to electronic and mechanical control units
(powertrain, chassis, body, infotainment, telematics, diagnos-
tics) for actuation [20]. We envisage a distributed ledger as an
underlying framework for data aggregation in all such cases of
automation to ensure security, privacy and tamper-resilience.

III. DATA AGGREGATION USING DISTRIBUTED LEDGER

Secure and tamper-resilient data aggregation within a set of
participating entities with a shared state is the need of the hour
for AVs, and the forte of distributed ledgers like blockchain.
The advantages of using Distributed Ledger Technology (DLT)
are many-fold, especially in terms of state-of-the-art data
privacy and real-time automation through smart-contracts.

A. Distributed Ledger Technology

Distributed ledgers (such as blockchain) provide a shared
state of records or transactions that have been executed through
consensus among a consortium of participating entities [21],
[22], [23]. The ledger contains a verifiable and tamper-resilient
record of every transaction in the network, and provides:

o Provenance of data — verifiable source of origin for all
records and transactions, eliminating conflict by design;
o Validity of data — distributed verification of all records
and transactions, adhering to some multi-party consensus;
o Immutability of data — secure storage of records or
transactions with tamper-proof cryptographic mechanism.

Blockchain, a publicly-verifiable consensus-driven tamper-
resilient distributed ledger, forms the backbone of Bitcoin [24]
and several other cryptocurrencies. Depending on network
structure, identity and trust, blockchain architectures have been
classified into three categories, namely public, private and
consortium [25]. With the advent of Ethereum [21], blockchain
ledgers equipped with smart contracts started modelling a
distributed operating system, while Hyperledger [22] and
Corda [23] have propelled blockchain into the domain of
consensus-driven automation networks. This is precisely where
distributed ledgers, especially blockchains, interface with the
AV ecosystem in terms of data aggregation and automation.

B. Blockchain for Data Aggregation

We observe that the data aggregation network in an AV
resembles a consortium blockchain network, which operates
under the federation of multiple groups of entities, with
the consensus dependent on a pre-decided subset of partici-
pants [25]. In Fig. 2, we present a conceptual model of the
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Fig. 2. Components, Modules and Data Flow Channels for Autonomous Navigation with an underlying Blockchain framework for Data Aggregation.

Autonomous Navigation data flow in an AV as a blockchain
network, with its core components, modules and data flow
channels following the operational layout of a consortium [22].

We partition the Autonomous Navigation system into two
functional units — the Perception—Decision unit and the
Decision—Actuation unit. In our proposed model, the partici-
pating modules (powertrain, chassis, telematics, infotainment,
V2X) form a consortium structure and contribute components
as members to form the data-flow channels. Two data flow
channels, navigation sensor channel (—) and navigation actu-
ation channel (—), control the chain of events during naviga-
tion, and record each event in the shared ledger. Each module
in the consortium network contributes its on-board sensors
and peripheral communication ports towards the navigation
sensor channel, and its actuation units and ECUs towards the
navigation actuation channel, as shown in Fig. 2.

The channels interact through the central Decision (Control)
Module, which is responsible for data fusion and decisions.
Raw data from the sensors, authenticated using their individ-
ual identities, are recorded in the form of smart contracts
for further validation, and the on-board buses (CAN, LIN,
MOST, FlexRay, Ethernet) act as mediators to aggregate data
from sensors connected to each one of them. This mutually
authenticated data, once aggregated, is used by the CPUs
to attain a consensus-driven decision. Finally, the decision
is communicated to all actuation units and ECUs via the
navigation actuation channel, with source verification and
recipient attribution using smart contracts to ensure overall
security and privacy of the navigation control system.

The consortium blockchain framework, comprising of the
distributed database, the authentication module, and data fu-
sion smart contracts, and the two data channels described
above, forms the backbone for Autonomous Navigation. This
framework may be strategically extended to encompass the
complete automation landscape of an AV, with multiple data
channels connecting the sensors, actuators and communication
modules on-board and in the smart mobility ecosystem.

C. Security and Implementation Issues

Security and privacy challenges in an AV ecosystem are
multi-fold — protection from data breach, secure decision
and control units, integrated embedded security, secure (over-
the-air) firmware updates and feature activation, secure V2X
communication, secure (remote) diagnosis, privacy-aware data
sharing, and many more. Moreover, most of the safety critical
operations in an AV demands real-time response, making life
even harder for a security designer. In certain scenarios, a
distributed ledger based data aggregation resolves a number of
existing issues [5], [6], [7], [8], [9], [10], [11], [12] pertaining
to security and privacy in an AV, and brings forth the inherent
benefits of consensus-driven decentralization.

While the distributed nature of the ledger naturally provides
redundancy and elimintates the risk of a single point-of-failure,
the consensus amongst the peers in the navigation sensor
channel and navigation actuation channel eliminates the risk
of single node vulnerability. This addresses the risks of sensor
spoofing [26] and fortifies the single-point attack surfaces
in an AV [27], [28]. As an example, consider attacks on
the Autonomous Navigation system by injection of erroneous
data at the GPS end-point [11], [12]. Such an attack will be
thwarted during consensus and validation in the navigation
sensor channel of the consortium, resulting in an efficient fault
detection and automated resolution of inconsistency.

The sensors and control units participating in the consortium
will require on-board identity management modules to ensure
the integrity and authenticity of the data during aggregation. In
addition, a trusted execution environment [29], [30] is required
at the Decision (Control) Module for secure execution of the
core data fusion and automation logic. The authenticated data
fusion will provide consistency and accountability guarantees
during secure processing of data for training of the on-board
Al core. The immutable and validated record of data aggre-
gated across the AV will also act as a reliable source of infor-
mation for auditors, manufacturers and insurance providers.



D. DLT and Real-Time Operations

Safety-critical AV operations require real-time decisions. On
the contrary, authenticated data aggregation using a distributed
ledger followed by robust analysis to gain reliable information
is time consuming, depending on the latency of the consensus
network and the model used for data analytics. In our proposal,
we do not mandate the use of aggregated data real-time in
any decision feedback loop, thus eliminating the consensus
overhead in safety-critical operations. The primary purpose of
data aggregation using a distributed ledger is to have a reliable
and validated source of information within the AV ecosystem,
without affecting its safety-critical real-time operations.

Using the distributed data aggregation framework within a
real-time decision loop in an AV will require an extremely high
throughput DLT design, supported by a low-latency consensus
mechanism like pBFT [31]. One may also consider a modular
design of the consortium network (as in Fig. 2) to allow for a
highly efficient consensus based on sharding [32].

IV. CONCLUSION AND FUTURE WORKS

Smart autonomy deserves a smart design. To the best of
our knowledge, we propose the first data and information
centric design of an autonomous vehicle architecture, with
integrated measures for security, tamper-resilience and privacy.
In the long run, one may similarly model the data aggregation
framework of a smart mobility grid as an integrated automation
network on top of a distributed ledger framework. Such a
framework may comprise of roadside infrastructure, electronic
road pricing system, parking facilities, electric charging sta-
tions, diagnostic networks, insurance agencies, service centers,
intra-vehicular network, system manufacturers, etc.
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